Phosphorylation of cytosolic domain Ser(937) affects both biosynthetic and endocytic trafficking of peptidylglycine alpha-amidating monooxygenase.

نویسندگان

  • T C Steveson
  • H T Keutmann
  • R E Mains
  • B A Eipper
چکیده

Peptidylglycine alpha-amidating monooxygenase (PAM), a bifunctional enzyme, catalyzes the COOH-terminal amidation of bioactive peptides. In test tube assays, PAM is phosphorylated by protein kinase C at Ser(937). The roles of phosphorylation and dephosphorylation of Ser(937) in the biosynthetic and endocytic trafficking of integral membrane PAM were examined using an antiserum specific for the phosphorylation of Ser(937) and using AtT-20 cells expressing membrane PAM in which Ser(937) was mutated to Ala or Asp. Although phosphorylation at Ser(937) can occur while PAM is in the endoplasmic reticulum, early steps in the biosynthetic trafficking of membrane PAM were not affected by Ser(937) phosphorylation. The inability to phosphorylate PAM/S937A increased its intracellular degradation and decreased secretion of the soluble monooxygenase portion of PAM. In contrast, the biosynthetic trafficking of PAM/S937D was indistinguishable from wild-type PAM. Despite the fact that Ser(937) is adjacent to the only Tyr-based internalization motif in PAM, internalization and trafficking through early endosomes were unaffected by phosphorylation. However, PAM antibody internalized by wild-type PAM acquired a perinuclear localization, while antibody internalized by PAM/S937A was routed to lysosomes, and antibody bound to PAM/S937D maintained a dispersed, punctate pattern. In cells stimulated with phorbol ester, phosphorylation of Ser(937) increased and phosphorylated PAM accumulated in large vesicular structures. Therefore, phosphorylation of PAM-1 at Ser(937) directs newly synthesized and internalized protein away from lysosomes, while dephosphorylation is needed for a different step in the late endocytic pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Access of a membrane protein to secretory granules is facilitated by phosphorylation.

Peptidylglycine alpha-amidating monooxygenase (PAM), an integral membrane protein essential for the biosynthesis of amidated peptides, was used to assess the role of cytosolic acidic clusters in trafficking to regulated secretory granules. Casein kinase II phosphorylates Ser(949) and Thr(946) of PAM, generating a short, cytosolic acidic cluster. P-CIP2, a protein kinase identified by its abilit...

متن کامل

Signaling mediated by the cytosolic domain of peptidylglycine alpha-amidating monooxygenase.

The luminal domains of membrane peptidylglycine alpha-amidating monooxygenase (PAM) are essential for peptide alpha-amidation, and the cytosolic domain (CD) is essential for trafficking. Overexpression of membrane PAM in corticotrope tumor cells reorganizes the actin cytoskeleton, shifts endogenous adrenocorticotropic hormone (ACTH) from mature granules localized at the tips of processes to the...

متن کامل

60 YEARS OF POMC: From POMC and α-MSH to PAM, molecular oxygen, copper, and vitamin C.

A critical role for peptide C-terminal amidation was apparent when the first bioactive peptides were identified. The conversion of POMC into adrenocorticotropic hormone and then into α-melanocyte-stimulating hormone, an amidated peptide, provided a model system for identifying the amidating enzyme. Peptidylglycine α-amidating monooxygenase (PAM), the only enzyme that catalyzes this modification...

متن کامل

Trafficking of a secretory granule membrane protein is sensitive to copper.

We explored the effect of copper availability on the synthesis and trafficking of peptidylglycine alpha-amidating monooxygenase (PAM), an essential cuproenzyme whose catalytic domains function in the lumen of peptide-containing secretory granules. Corticotrope tumor cell lines expressing integral membrane and soluble forms of PAM were depleted of copper using bathocuproinedisulfonic acid or loa...

متن کامل

Alternative splicing governs sulfation of tyrosine or oligosaccharide on peptidylglycine alpha-amidating monooxygenase.

Peptidylglycine alpha-amidating monooxygenase (PAM) catalyzes the COOH-terminal alpha-amidation of neuro-endocrine peptides through the sequential action of monooxygenase and lyase domains contained within this bifunctional protein. Alternative splicing leads to the expression of soluble and integral membrane bifunctional PAM proteins as well as a soluble monofunctional monooxygenase. In order ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 274 30  شماره 

صفحات  -

تاریخ انتشار 1999